Direct Observation of Interfacial Dzyaloshinskii-Moriya Interaction from Asymmetric Spin-wave Propagation in W/CoFeB/SiO2 Heterostructures Down to Sub-nanometer CoFeB Thickness

نویسندگان

  • Avinash Kumar Chaurasiya
  • Chandrima Banerjee
  • Santanu Pan
  • Sourav Sahoo
  • Samiran Choudhury
  • Jaivardhan Sinha
  • Anjan Barman
چکیده

Interfacial Dzyaloshinskii-Moriya interaction (IDMI) is important for its roles in stabilizing the skyrmionic lattice as well as soliton-like domain wall motion leading towards new generation spintronic devices. However, achievement and detection of IDMI is often hindered by various spurious effects. Here, we demonstrate the occurrence of IDMI originating primarily from W/CoFeB interface in technologically important W/CoFeB/SiO2 heterostructures using Brillouin light scattering technique. Due to the presence of IDMI, we observe asymmetry in the peak frequency and linewidth of the spin-wave spectra in the Damon-Eshbach (DE) geometry at finite k wave-vectors. The DMI constant is found to scale as the inverse of CoFeB thickness, over the whole studied thickness range, confirming the presence of IDMI in our system without any extrinsic effects. Importantly, the W/CoFeB interface shows no degradation down to sub-nanometer CoFeB thickness, which would be useful for devices that aim to use pronounced interface effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO.

Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its dire...

متن کامل

Direct observation of the Dzyaloshinskii-Moriya interaction in a Pt/Co/Ni film.

The interfacial Dzyaloshinskii-Moriya interaction in an in-plane anisotropic Pt(4  nm)/Co(1.6  nm)/Ni(1.6  nm) film has been directly observed by Brillouin spectroscopy. It is manifested as the asymmetry of the measured magnon dispersion relation, from which the Dzyaloshinskii-Moriya interaction constant has been evaluated. Linewidth measurements reveal that the lifetime of the magnons is asymm...

متن کامل

Enhanced orbital magnetic moments in magnetic heterostructures with interface perpendicular magnetic anisotropy

We have studied the magnetic layer thickness dependence of the orbital magnetic moment in magnetic heterostructures to identify contributions from interfaces. Three different heterostructures, Ta/CoFeB/MgO, Pt/Co/AlOx and Pt/Co/Pt, which possess significant interface contribution to the perpendicular magnetic anisotropy, are studied as model systems. X-ray magnetic circular dichroism spectrosco...

متن کامل

Origin of easy magnetization switching in magnetic tunnel junctions with voltage-controlled interfacial anisotropy

Spin-polarized currents represent an efficient tool for manipulating ferromagnetic nanostructures but the critical current density necessary for the magnetization switching is usually too high for applications. Here we show theoretically that, in magnetic tunnel junctions having electric-field-dependent interfacial anisotropy, the critical density may reduce down to a very low level (~10(4) A c...

متن کامل

Optical constant of CoFeB thin film measured with interference enhancement method

Optical constants (n and k) of Co20Fe60B20 (CoFeB) thin films (2~40nm) are measured by using interference enhancement method with spectroscopic ellipsometry in the wavelength range of 270~1600nm. The effects of film thickness, protection layer and annealing process on the optical constant of CoFeB film are investigated. In the range of 40~10nm, both n and k decrease with the decrease of thickne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016